1-HYDROXYMETHYL [6] HELICENE : ACID CATALYSED INTRAMOLECULAR REARRANGEMENT

INVOLVING THE HELICENE SKELETON.

R.H. Martin^{*}, J. Jespers and N. Defay

Service de Chimie Organique, Faculté des Sciences, Université Libre de Bruxelles, 50, Av. F.D. Roosevelt, B-1050 Bruxelles.

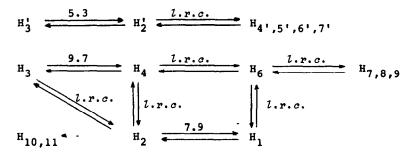
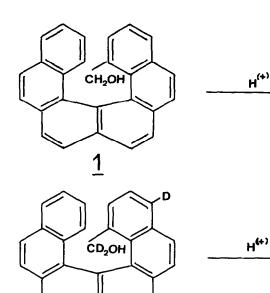
(Received in UK 20 January 1975; accepted for publication 19 February 1975)

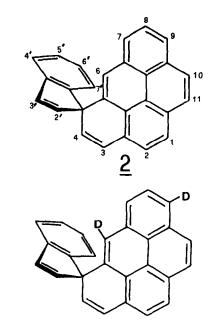
<u>Abstract</u>. On acid treatment, 1-hydroxymethyl [6] helicene (<u>1</u>) gives 5-H-benzo [c,d] pyrene-5-spiro-1'-indene (<u>2</u>). The structure of the rearranged hydrocarbon was provisionally assigned by catalytic hydrogenation, ²H labelling, U.V., ¹H- and ¹³C-NMR spectroscopy and confirmed by an X-ray diffraction study (M. Van Meerssche and coll., personal communication).

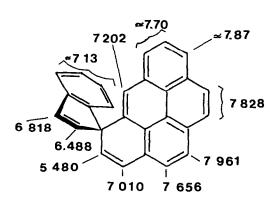
In the carbo-helicene series, no chemical reaction involving the skeleton frame has yet been described¹⁾. We now wish to report such a reaction $(1 + 2)^{2}$.

A solution of 1-hydroxymethyl [6] helicene (<u>1</u>) (0.16 g) and p.toluene sulfonic acid (0.08 g) in $C_{6}H_{6}$ (30 ml) is refluxed for 15 min and the reaction product purified by prep. TLC (Merck silica-gel, p. ether $60-70^{\circ}/C_{6}H_{6}$ 3:1). Yield 63%. Yellow needles, m.p. 157-159° (acetonitrile). M⁺ for m/e 340 (80%), M-1 339 (100%); calc. for $C_{27}H_{16}$: C, 95.3; H, 4.7. Found: C, 95.0; H, 4.9%.

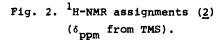
The ¹H-NMR spectrum (Bruker HX 90 MHz, CS₂, TMS=0) of this new hydrocarbon shows the following spin systems: 1. Four AB systems: a. $\delta_{\rm ppm}$ 5.480 and 7.010 (calc.) J 9.7 Hz; b. $\delta_{\rm ppm}$ 6.488 and 6.818 (calc.) J 5.3 Hz; c. $\delta_{\rm ppm}$ 7.656 and 7.961 (calc.) J 7.9 Hz; d. $\delta_{\rm ppm}$ 7.828 two protons quasisinglet ($v_{\frac{1}{2}}$ 0.8 Hz). 2. A complex aromatic ABCD system (center of the multiplet at 7.13 ppm; width 48 Hz). 3. An aromatic ABC system: a one proton multiplet at 7.87 ppm (width 15 Hz) and a two protons multiplet at 7.70 ppm (width 17 Hz). 4. A one proton quasi-singlet at 7.202 ppm ($v_{\frac{1}{2}}$ 1.1 Hz). By the use of the INDOR technique, the molecule can be divided in two parts, unconnected by (detectable) long range couplings: the aromatic ABCD system and the AB system b. (J 5.3 Hz) on the one hand, and the remaining protons on the other hand (Fig. 1).

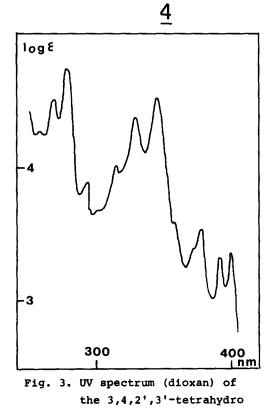




Fig. 1. ¹H-NMR; INDOR experiments on compound 2.

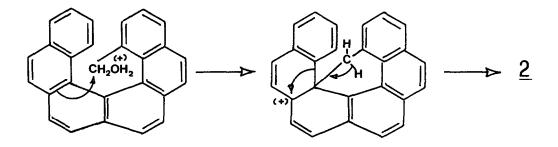

The ¹³C-NMR spectrum (Bruker HX 90, 22.63 MHz, CS₂, TMS=0) showed that the only sp³ carbon atom ($\delta_{\rm ppm}$ 59.72) is quaternary. The other signals are located between 121.34 and 155.36 ppm.

Pertinent results are as follows: 1. The $C_{27}H_{16}$ hydrocarbon contains seven rings (26 Csp² + 1 Csp³). 2. The quaternary sp³ carbon atom does not derive from the $-CH_2OH$ of <u>1</u> (loss of the quasi-singlet in the ¹H-NMR spectrum of <u>4</u>). Thus, if there is no deuterium migration during the rearrangement, the $-CH_2OH$ must be incorporated in a system such as $C_{C}C=CH-C < C_{C}$ 3. The sp³ carbon atom is probably the central atom of a spirane structure (the arguments leading to this conclusion are too elaborate to be developed here). 4. The AB system b. (J 5.3 Hz) belongs to a structure such as


(for a 6 or 7 membered ring $J \simeq 9.5$ Hz) or H_{H} . Based essentially on the above considerations, structure 2 was provisionally assigned to the hydrocarbon. This structure is compatible with the ¹H-NMR assignments shown in Fig. 2. According to these assignments, H_6 is shifted to high fields (0.63 ppm) relative to the chemical shift of the corresponding proton in pyrene.



<u>3</u>



Catalytic hydrogenation. The rearranged hydrocarbon (2) gives a tetrahydro derivative (M^+ for *m/e* 344), the U.V. spectrum (Fig. 3) of which is akin to the spectrum of pyrene. The ¹H-NMR spectrum shows the loss of the two AB systems assigned to H_3/H_4 and H_2'/H_3' in 2 (Fig. 2).

The structure of the $C_{27}H_{16}$ hydrocarbon was definitely proved to be $\underline{2}$ by an X-ray diffraction study, kindly carried out by M. Van Meerssche and coll. (personal communication).

The acid catalysed skeleton rearrangement $(\underline{1} \rightarrow \underline{2})^{3}$ can easily be visualised as shown in Scheme 1.

Scheme 1

Acknowledgements. The financial support of the "Fonds de la Recherche Fondamentale Collective" is gratefully acknowledged.

Footnotes.

- 1. It should however be recalled that R.C. Dougherty [J. Amer. Chem. Soc., <u>90</u>, 5788 (1968)] has observed the formation of "traces of coronene" (loss of $C_{2}H_{4}$) in the thermolysis of [6] helicene (sealed evacuated tube heated at 485° for 2 hr).
- An intramolecular 4+2 cycloaddition involving a helicene skeleton will be described shortly.
- 3. The rearrangement does not occur when a solutior of $\underline{1}$ in naphthalene is heated at 200° for 30 min. The formation of $\underline{2}$ is however observed when $\underline{1}$ is heated 30 min at 200° in hexachlorobutadiene, either in the presence or in the absence of a trace of CF_3CO_2H .